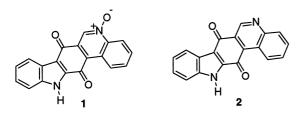
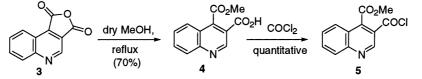


Tetrahedron Letters 43 (2002) 2939-2940


A simple and concise route to calothrixin B

Paul H. Bernardo, Christina L. L. Chai* and John A. Elix

Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia Received 22 January 2002; revised 18 February 2002; accepted 1 March 2002

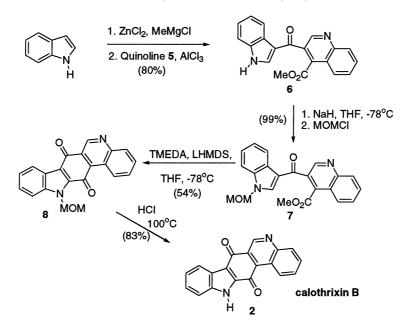

Abstract—A short and concise route to calothrixin B utilising Friedel–Crafts and lithiation reactions of readily available derivatives of quinoline and indole is described. © 2002 Elsevier Science Ltd. All rights reserved.

In 1999, a new class of pentacyclic metabolites with an indolo[3,2-*j*]phenanthridine ring system was isolated from cell extracts of the cyanobacteria *Calothrix*.¹ The metabolites calothrixins A (1) and B (2) show potent activity against malarial parasites and human cancer cells^{1,2} and as such these metabolites constitute interesting targets. To date, calothrixin A and B have been synthesised by Kelly et al.,³ and herein we describe a shorter, alternative route to calothrixin B.

Our synthesis commenced with the preparation of quinoline-3,4-anhydride (3) following modification of literature procedures.⁴ Treatment of the anhydride 3 with sodium methoxide in methanol gave a 2:1 mixture of the 4-mono and 3-mono methyl esters. When the anhydride 3 was refluxed in superdry methanol, only the desired 4-mono methyl ester 4 was obtained.⁵ This quinoline-3-carboxylic acid 4-methyl ester (4) was then converted into the corresponding acid chloride 5 in quantitative yield (Scheme 1).

Our initial attempts to couple N-tosyl indole with the acid chloride 5 under Friedel-Crafts conditions in the presence of a number of catalysts proved to be unsuccessful and only starting material was recovered. In the absence of the N-tosyl protecting group, successive treatment of indole with ZnCl₂ (2 equivalents) and MeMgCl (1 equivalent)⁶ followed by the quinoline 5 under Friedel-Crafts conditions gave the desired coupled product 6 in 80% yield (Scheme 2). For ease of handling, the key precursor 6 was protected as the N-MOM derivative 7 under standard conditions in excellent yields. Lithiation of 7 with lithium hexamethyldisilazide (LHMDS, 2.2. equivalents) in the presence of tetramethylethylenediamine (TMEDA, 1.1 equivalents) was followed by intramolecular nucleophilic substitution of the ester and the N-MOM derivative of calothrixin B (8) was obtained in moderate yields (54%). The N-MOM derivative 8 displayed identical spectroscopic data to those reported by Kelly et al.³ Cleavage of the N-MOM group was carried out by dissolving the N-MOM derivative 8 in DMSO under acidic conditions at 100°C. The physical and spectroscopic data of the synthetic sample so obtained were identical with those of the naturally occurring calothrixin B.[†] The synthesis as described constitutes a

Scheme 1.


Keywords: quinones; lithiation; natural products.

* Corresponding author. Fax: +61-2-6125-0760; e-mail: christina.chai@anu.edu.au

^{\dagger} As reported by Kelly et al.,³ we also observed small solvent shifts in the ¹³C NMR spectrum of calothrixin B in DMSO-*d*₆. In addition, direct TLC comparisons in a number of solvent systems showed that the natural and synthetic compounds are identical.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00434-3

P. H. Bernardo et al. / Tetrahedron Letters 43 (2002) 2939-2940

Scheme 2.

short, simple and expedient route to the synthesis of calothrixin B, starting from readily available starting materials.

Acknowledgements

The authors thank Dr. B. Flynn for useful suggestions and Dr. G. Smith and Professor R. Rickards for providing spectra and data for natural calothrixin B.

References

1. Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; de

Chazal, N. M.; Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. Tetrahedron Lett. **1999**, 55, 13513–13520.

- Doan, N. T.; Stewart, P. R.; Smith, G. D. FEMS Microbiol. Lett. 2001, 196, 135–139.
- Kelly, T. R.; Zhao, Y.; Cavero, M.; Torneiro, M. Org. Lett. 2000, 2, 3735–3737.
- Hohenlohe-Oehringen, K.; Rhomberg, A.; Bretschneider, H. Monatsh. Chem. 1966, 97, 135–144.
- Similar regioselectivities of ring opening of quinoline-3,4anhydride have been reported by: Godard, A.; Quéguiner, G. J. Heterocycl. Chem. 1980, 17, 465–473.
- (a) Yang, C.; Patel, H. H.; Ku, Y.-Y.; Shah, R.; Sawick, D. Synth. Commun. 1997, 27, 2125–2132; (b) Bergman, J.; Venemalm, L. Tetrahedron 1990, 46, 6061– 6066.